Pathogen Transfer in Fresh-Cut Operations

Dr. Elliot Ryser
Dept. of Food Science and Human Nutrition
Michigan State University
East Lansing, MI

PROJECT GOAL

• To enhance the microbial safety and quality of ready-to-eat, fresh-cut fruit and vegetable products via integrated research and outreach/training targeted at the processing, packaging, and distribution phases of the produce chain.

5 PROJECT MODULES

• PROCESSING
 — Quantify pathogen transfer and cross-contamination
• PACKAGING
 — Develop optimal packaging systems to enhance microbial safety and quality
• DISTRIBUTION
 — Evaluate and model potential for pathogen survival/growth during distribution
• RISK MODELING/ECONOMICS
 — Quantify risk of pathogen survival, and appropriate intervention strategies
• EDUCATION/TRAINING
 — Reduce risk of foodborne illness via high quality training programs

How Safe is Our Produce?

The Good Old Days
Welcome to the 21st Century

Pre-Harvest Contamination
- Cattle Feedlots
- Irrigation Water
- Wild Animals
- Composting Practices

Harvesting is Highly Variable

Processing is Also Highly Variable
- Commercial Processors
 - Mechanical
 - Semi-mechanical
 - Manual
- Foodservice/Supermarkets
 - Semi-mechanical
 - Manual

Contamination During Processing
- Crates, bins, tarps
- Food contact surfaces during processing
 - Equipment, knives, conveyors, brushes, flume tanks, shredders, shakers, dryers
- Non-food contact surfaces
 - Floors, drains
- Coolers, storage areas
- Personnel
 - Gloves, hygienic practices

Leafy Green Processing
- Shredder
- Conveyor
- Flume tank
- Centrifugal drier
- Shaker table
Product \rightarrow Equipment and Water

50 lb of *E. coli* O157:H7-inoculated lettuce or spinach

Distribution of *E. coli* O157:H7 after Centrifugal Drying of Lettuce

Equipment (and Water) \rightarrow Product

22.5 kg (50 lbs) uninoculated + 22.5 kg (50 lbs) inoculated

90 kg (200 lbs) uninoculated

Empty and refill water recirculation tank

Spread of *E. coli* O157:H7 to Product during Processing of Leafy Greens Containing ~4 log CFU/g

Spread of Contaminated Radicchio

45 kg (100 lbs) uninoculated Iceberg

9 kg (20 lbs) inoculated Radicchio

900 kg (2,000 lbs) uninoculated Iceberg

Empty and refill water recirculation tank

Buchholz et al. 2014. *J. Food Prot.* 77:1487-1494

Radicchio Remaining on Equipment Surfaces after Processing 900 kg of Uninoculated Lettuce

Conveyer Belt and Flume Tank

Blade and Interior Surface of the Lettuce Shredder

Spread of Contaminated Radicchio to Iceberg Lettuce during Processing

Percentage of Radicchio Recovered from Equipment Surfaces After Processing

How well do sanitizers work?

D-values for L. monocytogenes on fresh produce exposed to various sanitizers

Not well if the organic load in the water is high?
Wash Water Preparation

- Organic load (blended iceberg lettuce)
 - 0%, 2.5%, 5%, or 10% (w/v)
- 890 L (235 gal) recirculation tank

Davidson et al. 2014. J Food Prot. 77:1669-1681

Chlorine-Based Sanitizer

- XY-12, at 50 ppm available chlorine
 - Unadjusted, pH 8.10
 - Adjusted to pH 6.5 with Citric Acid (CA)
 - Adjusted to pH 6.5 with SmartWash™ (SW)
- Sanitizer concentration confirmation
 - XY-12: Chlorine Test Kit 321, Ecolab

Processing (5.4 kg Batches)

- Uninoculated (90 s) → 10 min → Inoculated (90 s) → 10 min → Uninoculated (90 s)
- Activities during 10 min intervals:
 - Adjust sanitizer to 50 ppm
 - Adjust pH to 6.5
 - Collect water samples

Populations of E. coli O157:H7 in Recirculating Wash Water

Populations of E. coli O157:H7 on Iceberg Lettuce after Centrifugation

Populations of E. coli O157:H7 in Centrifugation Water
Salmonella Transfer during Tomato Slicing

- Assess the impact of multiple processing variables on Salmonella transfer during slicing of tomatoes.

1 inoculated tomato (~ 5 log CFU/g)
Slicer design
Temperature
Time
Wetness
Thickness
Variety
Tomato slice samples
Microbial analysis
20 uninoculated tomato

Impact of Slicer Design on Salmonella Transfer

Salmonella Transfer to Different Parts of a Manual Slicer

Salmonella Transfer to Different Parts of an Electric Slicer

Salmonella Transfer Rate to 20 Uninoculated Tomatoes

<table>
<thead>
<tr>
<th>Variables</th>
<th>Transfer rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slicer design</td>
<td>Manual</td>
</tr>
<tr>
<td></td>
<td>1.11 ± 0.48 A</td>
</tr>
<tr>
<td>Time</td>
<td>0 min</td>
</tr>
<tr>
<td>Wetness</td>
<td>Dry</td>
</tr>
<tr>
<td></td>
<td>1.11 ± 0.48 B</td>
</tr>
<tr>
<td>Temperature</td>
<td>23 °C</td>
</tr>
<tr>
<td></td>
<td>1.11 ± 0.48 A</td>
</tr>
<tr>
<td></td>
<td>0.63 ± 0.35 A</td>
</tr>
<tr>
<td>Slice thickness</td>
<td>1/4 "</td>
</tr>
<tr>
<td></td>
<td>1.11 ± 0.48 A</td>
</tr>
<tr>
<td></td>
<td>0.18 ± 0.08 A</td>
</tr>
<tr>
<td>Variety</td>
<td>Torero</td>
</tr>
<tr>
<td></td>
<td>1.11 ± 0.48 A</td>
</tr>
<tr>
<td></td>
<td>Bigdena</td>
</tr>
</tbody>
</table>

Salmonella Transfer during Tomato Dicing

2 lb Uninoculated Roma tomatoes
2 lb Inoculated tomatoes (~ 5 log CFU/g)
10 batches of 2 lb Uninoculated tomatoes
50 g / sample
Microbial analysis
Salmonella Populations Transferred to Uninoculated Tomatoes

Salmonella Populations on Diced Tomatoes during 2 min of Washing

Salmonella Populations in Wash Water during 2 min of Washing

Salmonella Populations on Equipment Surfaces after 2 min of Washing

Salmonella Transfer during Conveying of Diced Tomatoes
Salmonella Reduction after Spray Treatment on Conveyor Belts

![Graph showing Salmonella reduction after spray treatment on conveyor belts.]

Listeria Transfer during Celery Dicing

![Image showing Listeria transfer during celery dicing.]

Kaminski et al. 2014. *J. Food Prot.* 77:756-761

Experimental Design

- Uninoculated celery (250 g)
- Inoculated celery or Swiss chard (250 g)
- 15 batches uninoculated celery (250 g each)

Percentage of Swiss Chard Transferred

![Graph showing percentage of Swiss chard transferred.]

Growth of *L. monocytogenes* in Diced Celery at 4°C

![Graph showing growth of *L. monocytogenes* in diced celery at 4°C.]

Growth of *L. monocytogenes* in Diced Celery at 7°C

![Graph showing growth of *L. monocytogenes* in diced celery at 7°C.]

Day 0 = Day 3 = Day 7
Generation time = 3.54 d

Generation time = 2.35 d
Growth of *L. monocytogenes* in Diced Celery at 10°C

- Day 0
- Day 3
- Day 7

Generation time = 0.87 d

Spread of *Listeria* during Slicing of Onions

- Dry in fume hood for 90 min
- Slice inoculated Onion
- Collect top, middle and bottom slice
- Slice 20 un inoculated Onions

Listeria Transfer during Mechanical Dicing of Onions

- 2.3 kg of onions dip-inoculated with *Listeria* at 4 or 2 Log CFU/g
- Prime Dicer with 2.3 kg of un inoculated onions
- Dice 1 (2.3 kg) batch of inoculated onions
- Collect 50 g sample from each batch.
- Dice 10 (2.3 kg) batches of un inoculated onions

Listeria Transfer from 1 (2.3 kg) Batch of Inoculated Onions (4.2 Log CFU/g)

- Listeria transfer from 1 inoculated onion (8.5 Log CFU/onion)
- Listeria transfer from 1 inoculated onion (6.4 Log CFU/onion)
- Listeria transfer from 1 inoculated onion (5.5 Log CFU/onion)

Transfer of *L. monocytogenes* during Coring of Cantaloupe and Honeydew Melon

- Experimental Design
- Inoculation of Cantaloupe and Honeydew
- Sterile Cork Borer to obtain core samples
- Core Samples from Different Red Regions
- Enumeration of *Listeria* on TSA-IR
- Aseptically Cutting one three sections

Figure 1: Simulated Cutting Process.
L. monocytogenes on the Rind of Cantaloupe and Honeydew Melon

Transfer of L. monocytogenes from the Rind to Cantaloupe Flesh

- Dip-inoculated for 10 min in a 3-strain avirulent cocktail of L. monocytogenes (strains M3, J22F, and J29H) containing 10^9 CFU/ml, air-dried for 1 h and then stored at 4°C for 24 h
- Two inoculated melon halves were mechanically sliced using a 0.75 inch manual slicer (Vollrath Redco 401N) followed by eight uninoculated melon halves
- Enumeration of L. mono on modified TSA-YE and Enrichment with UVM media

Transfer of L. monocytogenes from the Rind to Honeydew Melon Flesh

Slicing Experiments

- Listeria Transfer from Inoculated to Uninoculated Cantaloupe Melon Halves during Mechanical Slicing
- Listeria Transfer from Inoculated to Uninoculated Honeydew Melon Halves during Mechanical Slicing
Take Home Message

• A small contamination event in the field can lead to the contamination of large quantities of product after processing.
• New microbial intervention strategies are needed to minimize contamination of fresh-cut produce during washing.
• Changes in processing equipment design can lead to decreased levels of contamination
• The order in which fresh produce is processed may play a role in minimizing contamination

Acknowledgements

• Dr. Annemarie Buchholz
• Dr. Gordon Davidson
• Dr. Harry Wang
• Chelsea Kaminski
• Andrew Scollon
• Rocky Patil
 — and many undergraduate assistants

TEAM MEMBERS